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Convergence of reinforcement learning algorithms and acceleration of learning

A. Potapov* and M. K. Ali†
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~Received 11 May 2002; published 26 February 2003!

The techniques of reinforcement learning have been gaining increasing popularity recently. However, the
question of their convergence rate is still open. We consider the problem of choosing the learning stepsan , and
their relation with discountg and exploration degreee. Appropriate choices of these parameters may drasti-
cally influence the convergence rate of the techniques. From analytical examples, we conjecture optimal values
of an and then use numerical examples to verify our conjectures.
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I. INTRODUCTION

Reinforcement learning~RL! or, as it is sometimes called
‘‘learning with a critic’’ is a kind of supervised learning
when the learning agent~a controller such as a neural ne
work!, receives only evaluation signals concerning the s
tem to be controlled. When the agent performs an action,
evaluative response~reward! does not contain information
about the correct action that should have been taken. Ins
the agent gets evaluation of the present situation base
which it should learn to take right actions. This situation
typical when the desired result, but not the way to arrive
the desired result, is known. Examples of such cases inc
playing games such as chess or learning of living organi
and autonomous agents how to behave in a new envi
ment, see Refs.@1,2# or @3# for more details.

Modern methods of reinforcement learning appea
about 15–20 years ago. In this relatively short period, th
methods have gained popularity in solving problems of
timal control when the detailed description of the controll
system is not available or when other methods of optim
control are hard to apply. The theoretical basis of these m
ods includes the theory of dynamical programming~see, e.g.,
Ref. @4# or almost any book on optimal control! and a num-
ber of convergence theorems@3#. Most of these theorem
establish only the facts of the convergence, but they do
give the estimates of the convergence rate or the choice
the parameters of the methods. From the theoretical poin
view, the methods of RL estimate value functions of dynam
cal programming with the help of stochastic approximatio
It is well known that estimates of averages often have
rather poor convergence, and since many of them need t
estimated simultaneously from the same data, the con
gence must be even worse. Nonetheless, numerous ex
ments in both model and applied problems show that
methods produce the best or close to the best control pol
much quicker than it can be expected, provided the con
gence rate is not too slow—see applications of reinforcem
learning in Refs.@1–3,5–7#.

Convergence or the RL methods depend on a numbe
parameters. Nonetheless, the recommendations conce
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their choice which can be found in the literature are som
times cotradictory. For example, for the choice of the step
learning at timet, a t ~see below!, one can find recommen
dations to take it equal tot21 @3#, ki

21(t) which is the num-
ber of times of being in a statei @3#, 1 for some problems@1#,
or a small constant independent oft @8–10#. Most of these
recommendations are supported by convergence theor
which makes the actual choice slightly difficult. At the sam
time it follows from our own experience that the number
algorithm steps required for finding a good policy may diff
by orders of magnitude for different parameters of learni
e.g., Ref.@6#.

In this paper, we present recommendations for choice
the parameters of RL to increase the convergence rate.
approach is based on approximate estimates and nume
experiments. First, we briefly mention some of the conce
of dynamical programming~DP! and describe a few method
of RL. Then we consider choices of the parameters
sample cases and then compare our conclusions with th
sults of numerical experiments.

II. CONTROLLED MARKOV PROCESSES AND
DYNAMICAL PROGRAMMING

Dynamical programming has been developed for the
called Markov decision processes, that is, Markov proces
subjected to the controlling actions of a subsystem calle
controller or ‘‘an agent.’’ The model consists of an agent th
performs the actionsa, and the ‘‘environment’’ that can be in
certain statess. After each action, the state of the enviro
ment can change and the agent receives a reward signalr and
an information about the next states8. The value ofr may
depend ons, s8, anda, and the goal of the agent is to max
mize the total or average reward or some other functiona
r. Some problems, such as control of mechanical or chem
systems, chaotic dynamical system, navigation in a ma
can be formulated in this way if a proper reward signal
defined~see Refs.@1,2,5–7# for the examples!. For example,
the agent in the maze navigation is punished in each s
except when it is outside the maze. Here, the minimal p
ishment~maximal reward! corresponds to the shortest wa
out of the maze.

In what follows, we will consider only simple cases
which s, a, and the timet are discrete and the sets of possib
values for$sk% and $ai% are finite. Some comments abo
©2003 The American Physical Society06-1
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more complex cases will also be made.
The basic concepts of the theory involve the termspolicy

and value of states and actions. A policy p is a rule for
choosing action in a given state. Deterministic policy is
function a5a(s), random policy is the set of probabilitie
p i(s) of taking actionai in this state with( ip i(s)51. Ac-
cording to the Markov property, the probabilityP(s,a,s8) of
the next states8 after actiona in a states does not depend on
the previous history or time. Usually, it is assumed that
value of the reward is completely determined by the sets, a,
s8, that is, there is a functionR(s,a,s8), and r is always
equal to one of theR values. It is assumed that the values
R are bounded,uR(s,a,s8)u,Rmax. The total reward( t50

` r t

during an infinite number of steps can be infinite. In order
define an optimization task, dynamic programming use
discounted reward( t50

` g tr t,Rmax/(12g), 0,g,1.
Value of a state sfor the given policyp, Vp(s), is de-

fined as an average total discounted reward when the pro
starts from the states and the policyp is used for action
selection. Averaging is used because~i! the policy may be
random and~ii ! the next state may vary for the sames anda.
So, by definition

V~s!5(
a

pa~s!(
s8

P~s,a,s8!R~s,a,s8!

1g(
a8

pa8~s8!(
s9

P~s8,a8,s9!

3S R~s8,a8,s9!1g(
a9

••• D
5(

a
pa~s!(

s8
P~s,a,s8!@R~s,a,s8!1gV~s8!#.

~1!

This is a system of linear equations forV. These equations
are called the Bellman equations. Sinceg,1, the solution
exists and it is unique.

Similarly, action values Q(s,a) are defined as an averag
total discounted reward when the process starts from
states and actiona ~irrespective ofp) and subsequently th
policy p is used for action selection. It is easy to get simi
equation forQ,

Q~s,a!5(
s8

P~s,a,s8!

3S R~s,a,s8!1g(
a8

pa8~s8!Q~s8,a8!D
5(

s8
P~s,a,s8!@R~s,a,s8!1gV~s8!#. ~2!

If the Markov chain is ergodic and if for every polic
there exists a limiting invariant probability of each sta
p(s), then the policy can be characterized by an aver
value of state ^V&5(sp(s)V(s). Since p(s) describes
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an invariant distribution, (sp(s)(apa(s)(s8P(s,a,s8)
5p(s8), and taking this into account Eq.~1! gives after av-
eraging^V&5^R&1g^V& or

^V&5(
s

p~s!V~s!

5
1

12g (
s,a,s8

p~s!pa~s!P~s,a,s8!R~s,a,s8!

5
1

12g
^R&5

1

12g
lim

N→`

1

N (
t50

N

r t . ~3!

The last equality holds due to the ergodicity assumption.
An optimal policy p* provides the maximal values o

statesV* (s) for the choseng. Note that in spite of the pos
sibility of characterizing the policy by the mean state valu
~3!, an optimal policy may not give the maximal^R&: for
small g it is not important what will happen too far ahea
and an optimal policy is selected based only on the nea
future rewards. To obtain the best mean reward, it may
necessary to look far ahead.

In the theory of DP, it has been proven that the optim
deterministic policy consists in choosing the actiona with
the greatestQ* (s,a) or

a5arg max
u

Q* ~s,u!. ~4!

Such a policy is called thegreedy policy. The optimal values
of states and actions satisfy

V* ~s!5max
a8

(
s8

P~s,a8,s8!@R~s,a8,s8!1gV~s8!# ~5!

and

Q* ~s,a!5(
s8

P~s,a,s8!@R~s,a,s8!1g max
a8

Q* ~s8,a8!#.

~6!

The usual way of solving these equations isvalue itera-
tions ~VI !: one sets an initial guessQ(0)(s,a) and then ob-
tains the next values as

Q(k11)~s,a!5(
s8

P~s,a,s8!@R~s,a,s8!

1g max
a8

Q(k)~s8,a8!#.

It has been shown that VI converge for any initial gue
@2,4,11#. These iterations can be rewritten in terms ofV as
well.

Value iterations may be implemented aspolicy iteration:
we set a policyp (0), evaluateQ(0) for this policy, and then
make a new policy by choosing at every state the actioa
5arg maxu Q(0)(s,u). This gives the new policyp (1), and it
can be shown thatQ(1)(s,a)>Q(0)(s,a). Then usingQ(1),
one generates the policyp (2), and so on. The sequence
6-2
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policies converges to an optimal policyp* . Note that the
optimal policy is not required to be unique although all
them have the sameQ* andV* @2,4#.

III. REINFORCEMENT LEARNING

Now let us suppose that it is necessary to find an opti
policy for a Markov decision process without knowing th
values ofP(s,a,s8) and R(s,a,s8). It is assumed that one
knows the states of the process, the set of available act
and the reward after performing the current action. Theref
the policy should be extracted from the sequences1 , a1 , r 1 ,
s2 , a2 , r 2 , . . . . There are several basic approaches to so
this problem.

A. Value iterations and modeling

The simplest idea is to use the same value iteration w
approximate transition probabilities and rewards, that is, w
P(s,a,s8) and R(s,a,s8) replaced by experimentally mea
sured frequencies of transition froms to s8 and the corre-
sponding observed rewardr. This way, one builds a model o
the environment and then uses it for searching a good po
This approach works well only if the frequencies quick
converge to probabilities, which is not often the case. If
convergence is poor, the method may give wrong estim
of Q and hence a wrong policy. There are also more sop
ticated methods in RL which combine estimates of proba
ity with other techniques, see, e.g., Refs.@1,2#.

B. Q learning or use of stochastic approximation
to solve Eq.„6…

Equation ~6! can be rewritten as ^R(s,a)&
1g^maxa8 Q* (s8,a8)&2Q* (s,a)50. Current estimates o
Q(s,a) differ from Q* , therefore observations do not pro
vide mean values, and only the values

D t5r t1g max
a8

Q(t)~st11 ,a8!2Q(t)~st ,at!

are available. Nonetheless, they are adequate to organiz
iterative process that converges toQ* and hence leads to a
optimal policy.

The idea is based upon the method ofstochastic approxi-
mation. Note that the simplest averaging can be expresse
the iterative form. For example, if one needs to estimate
average from the firstn terms x1 , . . . ,xn , then Sn

5(1/n)(1
nxi . With the next term, the next estimate is

Sn115
1

n11 (
1

n11

xi5
1

n11
~nSn1xn11!

5Sn1an11~xn112Sn!, an115
1

n11
. ~7!

In 1951, this approach was generalized by Robbins
Monro @12#. They considered the following problem: one h
to find the solutionx* of an equationf (x)5 f 0 where, in-
stead of f (x), random valuesj(x) are available such tha
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only ^j(x)&5 f (x). The solution has been given in the for
of the sequencexk , which converges tox* ,

xn115xn1an@ f 02j~xn!#. ~8!

To ensure averaging, the sequencean should be of the ‘‘1/n
type,’’

(
1

`

an5`, (
1

`

an
2,`. ~9!

This method has been called stochastic approximation.
terwards, the method was generalized, see, e.g., R
@13,14#.

Most of the methods of reinforcement learning impleme
stochastic approximation.Q learning uses the following it-
erations:

Q(t11)~st ,at!5Q(t)~st ,at!1a t@r t1g max
a8

Q(t)~st11 ,a8!

2Q(t)~st ,at!#.

In 1993, the stochastic approximation theorems were g
eralized for the proof of convergence ofQ learning@15#.

C. Sarsa and other methods

If Q learning can be considered as a stochastic versio
value iterations, then sarsa is a stochastic version of po
evaluation which can be associated with policy improv
ment. The method searches for the solution of Eq.~2!:

Q(t11)~s,a!5Q(t)~s,a!1a t@r t1gQ(t)~st11 ,at11!

2Q(t)~st ,at!#.

At present, there are no rigorous results concerning sa
The name comes from the sequencest ,at ,r t ,st11 ,at11 in-
volved in the evaluation process.

There are also methods for estimatingV* , for example,
TD learning @2#. Note that the estimates ofV alone do not
give an optimal policy, one also needs the estimates of m
reward after each action. Nonetheless, there are tasks
which nonzero rewards are very rare. For example, in a ga
of chess the reward comes only after a long sequence
moves. In such problems, the knowledge ofV is enough for
action planning. Other RL methods can be found, e.g.,
Refs.@2,1#.

D. Exploration and e-greedy policy

In value iterations method of dynamical programming,
values of Q(s,a) are updated simultaneously, while inQ
learning, in sarsa, and in many other RL algorithms the v
ues are updated one at a time. This means that converg
may depend on the way of selection of the sequence of st
and actions: if the system never comes to a certain state,
the correspondingQ estimates cannot be made.

There is a theorem concerning convergence of async
nous value iterations@11#. It states that the method converg
as long as each state is chosen for the updating infini
6-3
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many times and each action is chosen infinitely many tim
In reinforcement learning, states and actions are selected
cording to the current policy, and therefore this policy sho
satisfy the conditions of asynchronous value iterations
allow explorationof states and actions@2,16#.

For the Q learning, the policy may be just random.
other algorithms, e.g., sarsa, the policy should gradually c
verge to the optimal policy. To ensure exploration, the
callede-greedy policies are used: with the probability 12e
the action with the largestQ(s,a) is chosen, and with the
probability e the action is chosen randomly. Ife converges
gradually to 0, then the policy will converge to the optim
one.

E. Eligibility traces

This is a way to accelerate convergence of RL meth
when nonzero rewards are rare. Then each nonzero rewa
very valuable and it would be desirable to use it to update
many states as possible. To do it, the so-called eligibi
traces have been introduced. For each state-action pairs, a
one more variable is added:e(s,a). At t50 all e are set to
0. When the system is in the states and the actiona is
chosen, one setse(s,a)51. Then after each algorithm stepe
is multiplied byl, 0,l,1. Updates in learning algorithm
are made for all states and actions simultaneously, but
added value is proportional toe. For example,Q learning
takes the form

Q(t11)~s,a!5Q(t)~s,a!1a tet~s,a!

3@r t1g max
a8

Q(t)~st11 ,a8!2Q(t)~st ,at!#.

For s5st , a5at , it remains the same, while for others al
some updates are done. Similarly, the algorithms ofV esti-
mating can be endowed with eligibility tracese(s).

It has been shown that eligibility traces algorithm can
expressed in the form of forward predictions@2#. For TD(l)
method ofV* estimation the convergence has been pro
@15#, andl denotes the eligibility traces.

F. Complex problems

The methods described above are efficient when the n
ber of states is of the order of several hundreds or thousa
but not too large. If the number of states is too large, ther
no possibility of visiting them all and trying them all or a
least all the essential actions during a reasonable time.
the other hand, the state may be continuous.

For very complex tasks, special techniques are nee
Usually, it is assumed that the task has some propertie
special structures that enable one to reduce the comple
This complexity reduction sometimes is called ‘‘coding’’@2#.
There are two main approaches.

~a! Aggregate many statess into one global stateS. The
number of such global states can be made not too large. A
aggregation, the methods of RL are applied to the stateS.
The main shortcomings of this approach are~i! creation of a
good aggregation is an art rather than science unless
obvious that for a group of states the optimal action sho
02670
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be the same,~ii ! after aggregation it is very likely that th
Markov property will be violated, and therefore convergen
of RL becomes a matter of luck~though luck is not too rare!.
See Ref.@6# for an example of learning without Marko
property.

~b! Approximate V(s) or Q(s,a) by a fitting function
f a(s,w) depending on a reasonable number of parameterw.
The most popular are linear functions and neural netwo
@2,3#. In the latter case, the algorithm of RL is transform
into a method of neural network training, i.e., updating t
weightsw. This method is successful sometimes, though
also has shortcomings. Here, the matter of luck is the cho
of f. The most well-known case of success of this approac
the TD Gammon, a program playing backgammon, wh
the method TD(l) has been combined with neural netwo
approximatingV(s) ~see review of applications in Ref.@2#!.

There is one more approach called direct policy estim
tion in which the policy is searched as a function of sta
p(s), see, e.g., Ref.@17#, it is also related with fitting func-
tion approximations. We shall not consider it here.

G. Non-Markov processes and incomplete description

The theory of RL and dynamical programming is esse
tially based on the hypothesis that the controlled proces
Markov. In many practical applications it is only a hypot
esis. Experiments show that methods of RL often can fin
good policy even for non-Markov processes.

For non-Markov processes, there is also a theoretical
sult. Suppose that the frequencies of transitionss, a→s8 uni-
formly converge to the probabilities, and the rewards aftes,
a uniformly converge to a mean reward^r (s,a)&. Then there
exists a solution of the Bellman equations~6!, and value
iterations should converge to it. There is a proof that un
these conditions, theQ learning will also converge to the
solution of Eq.~6! @18#. Note that in this case some hidde
problems may arise, since actual transition probabilities m
depend on previous history, initial conditions, the curre
policy, and so on.

Another very common problem occurs when there is
Markov decision process, but the agent does not rece
complete information about the system, that is, the kno
edge of the current state is only partial. For this case,
theory of partially observed Markov decision process
~MDPs! has been developed. Analysis is much more co
plex, but it has been shown that instead of states it is poss
to consider probabilities of being in a certain state, and
terms of the probabilities the problem can be formulated
an MDP@19,20#.

H. Convergence of RL algorithms, choice of parameters,
and the purpose of this paper

Convergence of RL algorithms may drastically depend
the choice of the parameters discountg, exploratione, eli-
gibility tracesl, and on the sequence of averaging stepsan .
Convergence theorems give only the bounds for these val
but usually they do not recommend their optimal valu
Nonetheless, one can find in the literature a number of r
ommendations.
6-4
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The optimal exploration levele strongly depends on th
sense of the problem. If the purpose is learning only,
value of e may be high. On the other hand, if the syste
must perform some task along with learning, it cannot affo
to have too much of random actions, and a trade-off betw
learning and performance should be reached. It depend
the specifics of the task, and hence no general recomme
tions can be made.

The discountg influences the convergence, but the p
mary goal of its choice is to determine what policy must
considered as an optimal one. It is well known that a cha
of this parameter can drastically change the optimal polic
see, e.g., examples in Refs.@1,2#.

The choice of eligibility traces decay factorl may influ-
ence the convergence very strongly. As we have alre
mentioned, they have been introduced to update action
ues of all previous actions responsible for the given rewa
Another interpretation is that the introduction ofl is equiva-
lent to making predictions of future rewards@2,3#, and so the
choice is related with the predictability time for the syste
This choice is also very specific to the problem at ha
Examples of the problems where the rewards are very
have been considered, e.g., in Ref.@2#, and numerical experi-
ments show that the optimal values are around 0.8–
Some analytical estimates can be found, e.g., in Ref.@10#.
For systems in which correlations decay very fast, there is
need to use eligibility traces at all.

So we see that for the choice ofe, g, andl there are no
definite formulas, but there are a few ideas that can hel
make a reasonable choice. For the sequence ofan there is no
single simple rule except for the relation~9!. In the literature,
one can find a number of contradictory recommendations
example,~1! takean5(n11)21, because this gives averag
ing in Eq. ~7! @3#; ~2! for some problems the optimal choic
is an51 @1#; ~3! take an5a small enough, this choice i
supported by proofs of convergence theorems in Refs.@8,9#;
~4! use differentan for each state: if the state is updatedkth
time at thenth step, usean51/k @3#.

At the same time, the choice of thean sequence may be
important for convergence similar to the choice of other
rameters, see, e.g., Ref.@6#. So we have tried to work out a
rule which can help in choosingan .

In one of the early papers on stochastic approximation
following formula was proposed@13#:

an5
ab

n1b
. ~10!

By varying a andb, it is possible to obtain the above cite
recommendations for the choice ofan as special cases of Eq
~10!. For a5b51, one getsan5(n11)21, the averaging
result in recommendation~1!. If b5`, one getsan5a—
recommendations~2! and ~3!. Finally, if eachQ is updated
approximately everyn0th step, then, according to recom
mendation ~4!, one can takean51/(n/n011)5n0 /(n
1n0), that is, once again Eq.~10! with a51, b5n0.

In this work, we have tried to work out recommendatio
for choosing the constantsa andb to achieve better conver
02670
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gence. We consider below application of stochastic appro
mation to two simple problems which allowed us to propo
a hypothesis concerning the choice of parameters. Th
conjectures are verified numerically.

IV. EXAMPLES OF CONVERGENCE OF STOCHASTIC
APPROXIMATION AND CHOICE OF an

The literature on RL contains numerous examples of
plications of the RL techniques. All the tasks considered c
be subdivided into two major categories, namely, determ
istic and stochastic tasks. An example of the determini
task is the navigation problem of an agent in a fixed maze
this case, after each action, the next state is unique. In
deterministic case, the transition matrixP(s,a,s8) for eachs,
a is nonzero only for ones8. All other cases which are no
deterministic we shall call stochastic. It turns out that t
choices of learning parameters are different for the two c
egories mentioned above, and the convergence rates are
different.

A. Deterministic learning

We call a task deterministic when after each action
next states8 is unique~in other words, a controlled dynami
cal system with complete knowledge of states! and the value
of reward is always the same. Then Eq.~6! becomes much
simpler,

Q~s,a!5R~s,a,s8!1g max
a8

Q~s8,a8!

or

R~s,a,s8!1g max
a8

Q~s8,a8!2Q~s,a![ f ~$Q%!50.

Here the valueR is available directly from the experimen
and it is possible to try to solve this system online. T
simplest way is to apply iterations

Qn11~s,a!5Qn~s,a!1a f ~$Qn%!.

Taking into account that for the optimal policyQ*
f ($Q* %)50,

Qn11~s,a!2Q* ~s,a!

5Qn~s,a!2Q* ~s,a!1a@ f ~$Qn%!2 f ~$Q* %!#

5~12a!@Qn~s,a!2Q* ~s,a!#

1ag@max
a8

Q~s8,a8!2max
a8

Q* ~s8,a8!#

or

uQn11~s,a!2Q* ~s,a!u

<u12auuQn~s,a!2Q* ~s,a!u

1uaugumax
a8

Q~s8,a8!2max
a8

Q* ~s8,a8!u.
6-5



c-

f

v

te
ib
ith
m

di-

rc
i

a
rd

ti-

d,

A. POTAPOV AND M. K. ALI PHYSICAL REVIEW E 67, 026706 ~2003!
Let the maximum of maxa8 Q(s8,a8) in the last term be
achieved fora1, and that ofQ* for a2. Since Q(s8,a1)
>Q(s8,a2) andQ* (s8,a1)<Q* (s8,a2),

umax
a8

Q~s8,a8!2max
a8

Q* ~s8,a8!u

5uQ~s8,a1!2Q* ~s8,a2!u

< max
a8P$a1 ,a2%

uQ~s8,a8!2Q* ~s8,a8!u

<max
a8

uQ~s8,a8!2Q* ~s8,a8!u.

Denotingdn(s,a)5uQ(s,a)2Q* (s,a)u, we get

dn11~s,a!<~ u12au1uaug!max
s,a

dn~s,a!.

If the current policy allows to visit all states and try all a
tions, there should be convergence providedu12au1uaug
,1. This gives 0,a,2/(11g), and the minimal value
~and hence the fastest convergence! is achieved ata51.
Therefore, in the deterministic case the optimal scheme oQ
learning is

Qn11~s,a!5R~s,a,s8!1g max
a8

Qn~s8,a8!.

This is the case of many classical examples of RL for na
gation in mazes, as it has been noted in Ref.@1#.

B. Stochastic learning

Let us consider the simplest possible situation: a sys
with a single state, a single action, but a number of poss
rewardsRk ~this situation can be a model for a system w
several states, from which it always returns to one of the!.
It can be described by the single-action valueQ, and Eq.~6!
givesQ5(PkRk1gQ, that is,Q5^R&/(12g). Let us con-
sider calculation ofQ from experiments~online! for this
case. Iterations will have the following form:

Qn115Qn1an11~r n1gQn2Qn!,

wherer n is equal to one of the rewardsRk .
Let us choosean such that this choice satisfies the con

tion of stochastic approximation and ensures that 0,an,1
to avoid instability and to leave some freedom for the sea
of optimality. One of the simplest choices is recommended
the well-known paper on stochastic approximation@13# an
5ab/(b1n), b.0. We denote the initial guess forQ by
Q0. Then we obtain the following iterative scheme:

Qn115Qn1
ab

b1n
~r n111gQn2Qn!5CnQn1anr n11 ,

Cn512
a

b1n
, a5ab~12g!.

At each stepn the estimate of action value must be
weighted sum of the initial guess and the obtained rewa
02670
i-

m
le

h
n

s,

Qn5w0
(n)Q01(

i 51

n

wi
(n)r i .

It is easy to show that

w0
(n)5Cn21Cn22•••C0 ,

wi
(n)5Cn21Cn22•••Cia i 215

Cn21Cn22•••C1

Ci 21Ci 22•••C1
a i 21 .

To simplify consideration, we can use the following es
mate:

ln~Cn21Cn22•••C1!5 (
k51

n21

lnS 12
a

b1nD
>2a(

k51

n21
1

b1n
>2aE

1

n dx

b1x

52a ln
b1n

b11
,

then

w0
(n)>S b11

b1nD a

,

wi
(n)>S b1 i

b1nD a ab

b1 i
5

ab

b1n S b1 i

b1nD a21

.

By varying b, we get different estimates forQn . Let us
assume that allr k are independent and identically distribute
then

^Qn&5 (
i 51

n21

wi
(n)^r i&5^R& (

i 51

n21

wi
(n) ,

(
i 51

n21

wi
(n)> (

i 51

n21
ab

b1n S b1 i

b1nD a21

5
ab

~b1n!a (
i 51

n21

~b1 i !a21

>
ab

~b1n!aE1

n

~b1x!a21dx

5
~b1n!a2~b11!a

~12g!~b1n!a

5
1

12g F12S b11

b1nD aG→ 1

12g
.

Let us estimate the variance ofQn :
6-6
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FIG. 1. Convergence ofQ learning during 1000 iterations for deterministic process withns56 states andna53 actions. Panels~a!,~b!:
a51.0, g50.2 and 0.8, exploratione50 (3), 0.01 (d), 0.1 (s), 0.2 (n), 0.5 ~filled triangle!, 0.9 (j); panels~c!,~d!: e50.2, g
50.2, and 0.8,a50.01 (3), 0.1 (d), 0.25 (s), 0.5 (n), 0.75~filled triangle!, 1.0 (j). Panels~a!,~b! show that the best convergence
achieved fore50.2 and 0.5. Panels~c!,~d! show that the convergence improves asa goes to 1 andb goes to infinity, which agrees with
theoretical analysis of deterministic learning. Navigation in mazes fits into this category.
Š~Qn2^Qn&!2
‹5 (

i , j 51

n21

wi
(n)wj

(n)
Š~r i2^R&!~r j2^R&!‹

5 (
i , j 51

n21

~wi
(n)!2~^r i

2&2^R&2!

5~^R2&2^R&2! (
i , j 51

n21

~wi
(n)!2.

The last sum can be estimated as

Dn; (
i , j 51

n21

~wi
(n)!2>

a2b2

~b1n!2a (
i 51

n21

~b1 i !2a22

>
a2b2

~b1n!2aEb11

b1n

x2a22dx.

Now there are three different cases.
02670
~1! 2a22,21, a,1/2, b,1/@2a(12g)#,

Dn;
a2b2

~122a!~b1n!2a S 1

~b11!122a
2

1

~b1n!122aD
;~b1n!22a.

The influence of initial conditions decays slower thann21/2,
and the variance decreases slower thann21.

~2! 2a22521, a5 1/2, b51/@2a(12g)#,

Dn;
a2b2

b1n
ln

b1n

b11
.

The influence of initial conditions decays asn21/2, and the
variance decreases as lnn/n.

~3! 2a22.21, a.1/2, b.1/@2a(12g)#,
r

-

FIG. 2. Like Fig. 1, filled ran-
dom process withns54 states and
na52 actions. Panels~a!,~b! show
that learning is faster for highe
exploration level. Panels~c!,~d!
show that the optimal conver
gence corresponds toa51 and
ab(12g) close to 10, that is,n0

'10. Increase ofg @compare pan-
els ~a!,~b! and ~c!,~d!# slows the
convergence.
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FIG. 3. Like Fig. 1, filled ran-
dom process withns54 states and
na54 actions. Panels~a!,~b! show
that learning is faster for highe
exploration level. Panels~c!,~d!
show that the optimal conver
gence corresponds toa51 and
ab(12g)5n0 close to 102. For
greaterg convergence is slower.
t
th
r

t

g
term
d
.

a
s

ov
and
Dn;
a2b2

~2a21!~b1n!2a
@~b1n!2a212~b11!2a21#

;
a2b2

2a21
~b1n!21.

The influence of initial conditions decays asn2a, and the
variance decreases asn21.

It is obvious that the third case is preferential compared
the first two. It is impossible to change the exponent for
decay rate by varyingb, but it is possible to vary the facto

a2b2

2a21
5

a2b2

2ab~12g!21
.

It reaches minimum fora51 or ab5(12g)21, and there-
fore for this choice

an5
a

11a~12g!n
, Dn;

a

~12g!@11a~12g!n#
,

~11!

and the influence of initial guess decays as
02670
o
e

w0
(n)>

11a~12g!

11a~12g!n
.

It is interesting that in this casewi
(n) is almost independen

of i for i large enough, and hence the estimate ofQn is
almost exactly proportional to the estimate of̂r &
5(1/n)(1

nr k .
Therefore our example gives Eq.~11! as the recom-

mended choice ofan . In real RL learning tasks averagin
goes on slower because at every time step we get a
relevant to only ones, a pair. Possibly this can be accounte
for by replacingn with n/n0, the effective averaging rate
This gives the estimate in the form

an5
an0

n01a~12g!n
, b5

n0

a~12g!
. ~12!

To verify our hypothesis we performed calculations for
number of tasks, whereQ(s,a) can be calculated by mean
of dynamical programming.

V. NUMERICAL EXPERIMENTS

For numerical experiments we used a number of Mark
decision processes without terminal states. The transition
-

r

r-
FIG. 4. Like Fig. 1, sparse ran
dom process withns54 states and
na54 actions. Panels~a!,~b! show
that learning is faster for highe
exploration level. Panel~c! shows
that the optimal convergence co
responds toa51 andab(12g)
5n0 close to 103. For greaterg in
panel ~d! there is almost no con-
vergence.
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FIG. 5. Like Fig. 1, sparse ran
dom process withns56 states and
na53 actions. Panels~a!,~b! show
that learning is faster for highe
exploration level. Panel~c! shows
that the optimal convergence co
responds toa>0.5 and ab(1
2g)5n0>103. For greaterg in
panel ~d! there is almost no con-
vergence.

FIG. 6. Like Fig. 11, sparse
random process withns56 states
and na53 actions, obtained from
the problem of navigation of an
agent in a grid world. Panels
~a!,~b! show that learning is faste
for higher exploration level. Pane
~c! shows that the optimal conver
gence corresponds toa51 and
ab(12g)5n0>103. For greater
g in panel~d! the convergence is
slower.

FIG. 7. Time needed for find-
ing an optimal policyT1 for the
same process as in Fig. 1. IfT1

5104, the optimal policy has not
been found. In most cases the o
timal policy has been found when
the accuracy ofQ estimates were
10% or worse. The controlled pro
cess has six states, three action
and optimal behavior involves al
six states.
026706-9
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FIG. 8. Time needed for find-
ing an optimal policyT1 for the
same process as in Fig. 3. Th
controlled process has four state
four actions, and optimal behavio
is mainly concentrated on thre
states.
e
s

-

rd
u

ca
w

–
d

a
ko

,
or

ow

e.
for

imal

e of
e

the
reward matricesP andR were generated randomly. Then w
calculated the optimal policy for them and used only tho
for which optimal policy forg50 ~estimated from the ma
trix R only! differs from that forg.0, that is, the possibility
to find the optimal policy occasionally only from the rewa
matrix was excluded. We performed calculations for vario
values of g, a, b, and e. Initial values were alwaysQ
50.

Since fast convergence is important in practical appli
tions, we made 2000 steps of RL algorithm, at every step
calculated the current errorE(t)5maxs,auQt(s,a)2Q* (s,a)u,
and considered the ratio of mean error at the steps 10
(E0) and 1000–2000 (E1). This ratio has been average
over ten independent runs.

Because of numerous repetitions, the calculations
rather time consuming, and for this reason we used Mar
processes with a few statesns and actionsna only. We used
three types of Markov processes:~i! deterministic, when for
all s, a only one entryP(s,a,s8)51 and all other are zero
~ii ! ‘‘sparse’’ random—only one to two nonzero entries f
eachs, a, ~iii ! ‘‘filled’’ random, when almost all entries are
nonzero. The presented figures were obtained for the foll
ing parameters. Panels~a!,~b!: a51.0, g50.2 and 0.8, vari-
ous b, and e50 (3), 0.01 (d), 0.1 (s), 0.2 (n), 0.5
02670
e

s

-
e

20

re
v

-

~filled triangle!, 0.9 (j); panels~c!,~d!: e50.2, g50.2 and
0.8, various b, and a50.01 (3), 0.1 (d), 0.25 (s),
0.5 (n), 0.75 ~filled triangle!, 1.0 (j).

The results for deterministic case~Fig. 1! show that the
best convergence rate is obtained forb>105, which means
that during 2000 stepsan5ab/(b1n) remained practically
constant. The closera is to 1, the better is the convergenc
This is in a good agreement with convergence analysis
deterministic systems in Sec. IV.

For filled random processes~Figs. 2 and 3!, again in a
good agreement with the examples above, there is an opt
value ofb, which depends ona, g, ande. The dependence
on a is close to the theoretical one,b;a21 ~optimal con-
vergence corresponds to approximately the same valu
ab). The value ofn0 estimated from the figures as the valu
of ab(12g) at the point of the plot minimum in panels~c!
and ~d! is about 10–100.

For sparse random processes~Figs. 4–6! situation is in-
termediate, that is, usually there is also an optimalb, but n0
is greater than in the previous case—the minimum of
error plot in panels~c! and ~d! corresponds ton05ab(1
2g) equal to 102, 103, or more.

The main conclusions are the following.
~1! Convergence rate is better whena51.
e
s,
r
e
s
e

FIG. 9. Time needed for find-
ing an optimal policyT1 for the
same process as in Fig. 4. Th
controlled process has four state
four actions, and optimal behavio
is concentrated with 60 on on
state, and the rest of probability i
spread onto remaining thre
states.
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FIG. 10. Time needed for find-
ing an optimal policyT1 for the
same process as in Fig. 6. Th
controlled process has six state
three actions, and optimal behav
ior involves only two states. An
optimal policy is found much
faster than in other cases.
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~2! The best convergence is achieved withb5n0 /a(1
2g), wheren0 depends on the controlled system and m
vary from;10 to`. There is no good interpretation for th
parametern0 in terms of dynamical programming or stocha
tic approximation for both stochastic and determinis
systems—for the latter it cannot be considered as a m
updating interval forQ. Nonetheless, for practical purpos
this parameter appears convenient. As it follows from exp
ments, the more deterministic the controlled process is~that
is, the more definite the result of actions is!, the greater is the
optimal n0.

~3! For greaterg the convergence may be slower, esp
cially for largee.

~4! The greater thee, the faster is the convergence, esp
cially for optimal b.

Nonetheless, the convergence is rather weak excep
the case of deterministic system withan>1: the best result
for random system is the factor 1021–1022 during 1000 it-
erations, that is, the best rate is close to;n20.5 ~in agree-
ment with theoretical result for variance as;n21). In spite
of this slow convergence, usually the method finds an o
mal policy during 2000 iterations.

Figures 7–10 show the mean number of iterations nee
for the algorithm to find an optimal policy. Comparison wi
the Figs. 1–6 shows that the error inQ estimates when the
optimal policy has been found is 10% or worse. Hence
methods of reinforcement learning do not require very ac
rate estimates of action values to provide a good policy. M
probably, this is the main reason of their success. In m
examples only a few hundred or thousand time steps
necessary to get a good policy, and, as it follows from
figures, sometimes a good policy has been found und
very poor convergence. The reason of this phenomeno
not clear yet. Possibly this is related with the fact that
optimal policy often generates rather simple system’s
namics involving only a few states. This means that the
ward from this short chain is greater than that from oth
short chains. Methods of reinforcement learning always s
with evaluating rewards from short chains, especially ifan
>1. Then, after a certain number of steps enough to eval
the short chains, the exact optimal policy can be found
this hypothesis is true, it may explain the observed facts
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favor of this conjecture is also the fact that the longest tr
sient period corresponds to optimal sequence of six st
~Fig. 7!, and the shortest transient to optimal sequence of
states~Fig. 10!. However, this conjecture is hard to put
rigorous form, though the mentioned effect appears to be
main reason of the success of the reinforcement learn
techniques. Anyway, proper choice of learning parame
can accelerate learning significantly.

VI. CONCLUSIONS

We considered the problem of choosing parameters oQ
learning. We used the form of the sequencean5ab/(b
1n) proposed in Ref.@13#, and showed that the best resu
were obtained witha51. The optimal value ofb depends
on the properties of the MDP.b is >1, and often it is 10,
100, or more. As the randomness in a process decrease
optimal b value increases. For a pure deterministic proce
in which each action uniquely defines the next state, the
timal value isb5`, that is,an51. The value ofg is not too
critical for convergence~though for smallerg the conver-
gence is usually better!. g is more important for the appro
priate evaluation of performance: local, only a few ste
ahead (g>0) or global (g>1) optimization is necessary
Usually the convergence is better for large exploration le
e, but its optimal choice depends on the specific probl
concerning what level of randomness can be allowed,
e.g., Ref.@2#.

We must note that our results were tested on a limi
number of systems. Nonetheless, for a new RL task our
sults provide a possible way of achieving a better conv
gence. We recommend applying RL methods withan
5n0 /@n01(12g)n# andn0 equal to 10, 100, 1000, and 105

~which is close enough tò ), and compare the resultin
policies to find the optimalb value.
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