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Convergence of reinforcement learning algorithms and acceleration of learning
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The techniques of reinforcement learning have been gaining increasing popularity recently. However, the
question of their convergence rate is still open. We consider the problem of choosing the learniag, stepd
their relation with discounty and exploration degree. Appropriate choices of these parameters may drasti-
cally influence the convergence rate of the techniques. From analytical examples, we conjecture optimal values
of a,, and then use numerical examples to verify our conjectures.
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[. INTRODUCTION their choice which can be found in the literature are some-
times cotradictory. For example, for the choice of the step of
Reinforcement learnin¢RL) or, as it is sometimes called, learning at timet, «, (see beloy, one can find recommen-
“learning with a critic” is a kind of supervised learning dations to take it equal to * [3], k; *(t) which is the num-
when the learning agerta controller such as a neural net- ber of times of being in a stat¢3], 1 for some problemfl],
work), receives only evaluation signals concerning the sysor a small constant independent tof8—10]. Most of these
tem to be controlled. When the agent performs an action, theecommendations are supported by convergence theorems,
evaluative respons@eward does not contain information which makes the actual choice slightly difficult. At the same
about the correct action that should have been taken. Instealiine it follows from our own experience that the number of
the agent gets evaluation of the present situation based aigorithm steps required for finding a good policy may differ
which it should learn to take right actions. This situation isby orders of magnitude for different parameters of learning,
typical when the desired result, but not the way to arrive ae.g., Ref[6].
the desired result, is known. Examples of such cases include In this paper, we present recommendations for choices of
playing games such as chess or learning of living organismthe parameters of RL to increase the convergence rate. Our
and autonomous agents how to behave in a new envirorapproach is based on approximate estimates and numerical
ment, see Refd1,2] or [3] for more details. experiments. First, we briefly mention some of the concepts
Modern methods of reinforcement learning appearedf dynamical programmin¢DP) and describe a few methods
about 15-20 years ago. In this relatively short period, thesef RL. Then we consider choices of the parameters for
methods have gained popularity in solving problems of op-sample cases and then compare our conclusions with the re-
timal control when the detailed description of the controlledsults of numerical experiments.
system is not available or when other methods of optimal
control are hard to apply. The theoretical basis of these meth-
ods includes the theory of dynamical programmisee, e.g.,
Ref.[4] or almost any book on optimal contiadnd a num-
ber of convergence theoremi8]. Most of these theorems Dynamical programming has been developed for the so-
establish only the facts of the convergence, but they do natalled Markov decision processes, that is, Markov processes
give the estimates of the convergence rate or the choices feubjected to the controlling actions of a subsystem called a
the parameters of the methods. From the theoretical point afontroller or “an agent.” The model consists of an agent that
view, the methods of RL estimate value functions of dynami-performs the actiona, and the “environment” that can be in
cal programming with the help of stochastic approximation.certain states. After each action, the state of the environ-
It is well known that estimates of averages often have anent can change and the agent receives a reward signal
rather poor convergence, and since many of them need to ta information about the next state. The value ofr may
estimated simultaneously from the same data, the convedepend ors, s’, anda, and the goal of the agent is to maxi-
gence must be even worse. Nonetheless, numerous expemtize the total or average reward or some other functional of
ments in both model and applied problems show that Rl. Some problems, such as control of mechanical or chemical
methods produce the best or close to the best control policies/stems, chaotic dynamical system, navigation in a maze,
much quicker than it can be expected, provided the converean be formulated in this way if a proper reward signal is
gence rate is not too slow—see applications of reinforcemerdefined(see Refs[1,2,5—7 for the examples For example,
learning in Refs[1-3,5-7. the agent in the maze navigation is punished in each state
Convergence or the RL methods depend on a number @xcept when it is outside the maze. Here, the minimal pun-
parameters. Nonetheless, the recommendations concernitfghment(maximal reward corresponds to the shortest way
out of the maze.
In what follows, we will consider only simple cases in
*Email address: apotapov@math.ualberta.ca whichs, a, and the time are discrete and the sets of possible
"Email address: ali@uleth.ca values for{s,} and{a;} are finite. Some comments about
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more complex cases will also be made. an invariant distribution, 2.p(s)2,7a(S)Zs P(s,a,s")
The basic concepts of the theory involve the tepnicy  =p(s’), and taking this into account E¢l) gives after av-

and value of states and action# policy  is a rule for  eraging(V)=(R)+ (V) or

choosing action in a given state. Deterministic policy is a

function a=a(s), random policy is the set of probabilities _

i(s) of taking actiona; in this state with>;m;(s)=1. Ac- V) g P(SIV(S)

cording to the Markov property, the probabiliB(s,a,s’) of

the next states’ after actiona in a states does not depend on

the previous history or time. Usually, it is assumed that the

value of the reward is completely determined by thessat N

s’, that is, there is a functioiR(s,a,s’), andr is always 1 1 1

equal to one of th® values. It is assumed that the values of = E<R>:E ’\II'an N z Me-

R are bounded,R(s,a,s")|<Rpmax- The total reward,_ ,r,

during an infinite number of steps can be infinite. In order toThe last equality holds due to the ergodicity assumption.

define an optimization task, dynamic programming uses a An optimal policy 7* provides the maximal values of

discounted reward_ 5 ¥'r;<Rma/(1—7), 0<y<L1. statesV* (s) for the choseny. Note that in spite of the pos-
Value of a state $or the given policyw, V7(s), is de-  sibility of characterizing the policy by the mean state values

fined as an average total discounted reward when the proceg®, an optimal policy may not give the maximéR): for

starts from the state and the policyw is used for action small y it is not important what will happen too far ahead,

selection. Averaging is used becauggethe policy may be and an optimal policy is selected based only on the nearest

random andii) the next state may vary for the samanda.  future rewards. To obtain the best mean reward, it may be

- % > p(s)ma(s)P(s,a,s')R(s,a,s")

s,a,s’

()

So, by definition necessary to look far ahead.
In the theory of DP, it has been proven that the optimal
_ / / deterministic policy consists in choosing the act@amwith
V(s) ; Wa(s)g P(sa,sHR(s.a.s) the greatesQ* (s,a) or
, I a=arg maxQ*(s,u). 4
+y2 Wa/(s )2 P(S 1a rs ) u
a/ s//
Such a policy is called thgreedy policy The optimal values
x| R(s’,a’,s") +y>, - of states and actions satisfy
al!
V*(s)=max>, P(s,a’,s')[R(s,a’,s')+yV(s')] (5)
=§ wa(s)E P(s,a,s")[R(s,a,s")+yV(s')]. al s
S!
(1) and

This is a system of linear equations fgr These equations Q*(s,a)=> P(s,a s")[R(s,a,8')+y maxQ*(s',a’)].
SI

are called the Bellman equations. Singe 1, the solution a

exists and it is unique. (6)
Similarly, action values @s,a) are defined as an average

total discounted reward when the process starts from the The usual way of solving these equationsvidue itera-

states and actiona (irrespective ofr) and subsequently the tions (V1): one sets an initial gues®®(s,a) and then ob-

policy 7 is used for action selection. It is easy to get similartains the next values as

equation forQ,

’

Qs a)=> P(s,a,5')[R(s,a,s)

Q(s,a)=>, P(s,a,s) s
s +y maxQ®(s’,a")].
X R(s,a,s’)+y2 ma(s)Q(s’,a")

a

It has been shown that VI converge for any initial guess
[2,4,11]. These iterations can be rewritten in terms\oas
’ ’ ’ well.
_§ P(s.asHIR(s,a,8) + YV(sT] @ Value iterations may be implemented jaalicy iteration
we set a policyr(?), evaluateQ(®) for this policy, and then
If the Markov chain is ergodic and if for every policy make a new policy by choosing at every state the acion
there exists a limiting invariant probability of each state =argmay Q©(su). This gives the new policyr™"), and it
p(s), then the policy can be characterized by an averagean be shown tha®®)(s,a)=Q(%)(s,a). Then usingQ®,
value of state(V)=3p(s)V(s). Since p(s) describes one generates the policy?), and so on. The sequence of
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policies converges to an optimal poliey*. Note that the only (¢(x))=f(x). The solution has been given in the form
optimal policy is not required to be unique although all of of the sequence,, which converges ta*,
them have the sam@* andV* [2,4].

Xn+ 1= X+ apl fo— €Xn) . (®)
IIl. REINFORCEMENT LEARNING To ensure averaging, the sequengeshould be of the “Ir
Now let us suppose that it is necessary to find an optimalyPe:"
policy for a Markov decision process without knowing the o o
values ofP(s,a,s’) andR(s,a,s’). It is assumed that one E =0 E <o (9)
knows the states of the process, the set of available actions, T " T

and the reward after performing the current action. Therefore . o
the policy should be extracted from the sequesigea, , r;,  1his method has been called stochastic approximation. Af-
S,, @y, I, ... . There are several basic approaches to solvierwards, the method was generalized, see, e.g., Refs.

this problem. [13,14. _ o
Most of the methods of reinforcement learning implement

stochastic approximatiorQ learning uses the following it-
erations:

The simplest idea is to use the same value iteration with
approximate transition probabilities and rewards, that is, with Q" 1(s;,a,)=Q®(s;,a,) + a,[r+ ymax QM (s, ,,a’)
P(s,a,s') andR(s,a,s’) replaced by experimentally mea- a’
sured frequencies of transition fromto s’ and the corre- —QW(s;,a)]
sponding observed rewardThis way, one builds a model of ’ '

the environment and then uses it for searching a good policy. |n 1993, the stochastic approximation theorems were gen-

This approach works well only if the frequencies quickly eralized for the proof of convergence @flearning[15].
converge to probabilities, which is not often the case. If the

convergence is poor, the method may give wrong estimates
of Q and hence a wrong policy. There are also more sophis-

ticated methods in RL which combine estimates of probabil- If Q learning can be considered as a stochastic version of
ity with other techniques, see, e.g., Réts.2]. value iterations, then sarsa is a stochastic version of policy

evaluation which can be associated with policy improve-
ment. The method searches for the solution of 4.

A. Value iterations and modeling

C. Sarsa and other methods

B. Q learning or use of stochastic approximation

to solve Eq.(6) QU (s,8)=QU(s,a)+ ay[r + yQO(St1,80:1)
Equation (6) can be rewritten as (R(s,a)) ®
+y{maxy Q*(s',a’))—Q*(s,@=0. Current estimates of ~Q%(si.a)].

Q(s,a) differ from Q*, therefore observations do not pro-

1 At present, there are no rigorous results concerning sarsa.
vide mean values, and only the values

The name comes from the sequersgea,,r(,Siy1,8r41 IN-

_ (1) "N _ A volved in the evaluation process.
A=rety m?xQ (St1,87) = Q7 st.ad There are also metho?js for estimatig, for example,

TD learning[2]. Note that the estimates &f alone do not

are available. Nonetheless, they are adequate to organize give an optimal policy, one also needs the estimates of mean
iterative process that converges@¥ and hence leads to an reward after each action. Nonetheless, there are tasks for
optimal policy. which nonzero rewards are very rare. For example, in a game

The idea is based upon the methodstifchastic approxi- Of chess the reward comes only after a long sequence of
mation Note that the simplest averaging can be expressed ifmoves. In such problems, the knowledgeVois enough for
the iterative form. For example, if one needs to estimate thé@ction planning. Other RL methods can be found, e.g., in
average from the firstn terms x;,...X,, then S, Refs.[2,1].
=(1/n)=1x; . With the next term, the next estimate is

a

D. Exploration and e-greedy policy

n+1
_ _ In value iterations method of dynamical programming, all
= Xi=——(n§,+Xx . . ’
Snia n+1 21: ' n+1( St Xnt1) values ofQ(s,a) are updated simultaneously, while @

learning, in sarsa, and in many other RL algorithms the val-
ues are updated one at a time. This means that convergence
may depend on the way of selection of the sequence of states
and actions: if the system never comes to a certain state, then
In 1951, this approach was generalized by Robbins anthe correspondin® estimates cannot be made.

Monro[12]. They considered the following problem: one has  There is a theorem concerning convergence of asynchro-
to find the solutionx* of an equationf(x)=f, where, in-  nous value iterationgl1]. It states that the method converges
stead off(x), random valuest(x) are available such that as long as each state is chosen for the updating infinitely

1
=St ans1(Xns1—Sn), an+1:m- (7)
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many times and each action is chosen infinitely many timesbe the same(ii) after aggregation it is very likely that the
In reinforcement learning, states and actions are selected aktarkov property will be violated, and therefore convergence
cording to the current policy, and therefore this policy shouldof RL becomes a matter of lugkhough luck is not too raje
satisfy the conditions of asynchronous value iterations thagee Ref.[6] for an example of learning without Markov
allow explorationof states and actiorn,16]. property.

For the Q learning, the policy may be just random. In  (b) Approximate V(s) or Q(s,a) by a fitting function
other algorithms, e.g., sarsa, the policy should gradually conf (s,w) depending on a reasonable number of parameters
verge to the optimal policy. To ensure exploration, the so-The most popular are linear functions and neural networks
called e-greedy policies are used: with the probability-#  [2,3]. In the latter case, the algorithm of RL is transformed
the action with the largesR(s,a) is chosen, and with the into a method of neural network training, i.e., updating the
probability e the action is chosen randomly. éf converges  weightsw. This method is successful sometimes, though it
gradually to O, then the policy will converge to the optimal also has shortcomings. Here, the matter of luck is the choice
one. of f. The most well-known case of success of this approach is

the TD Gammon, a program playing backgammon, where
E. Eligibility traces the method TDX) has been combined with neural network

This is a way to accelerate convergence of RL methodgpproximatingV(s) (see review of applications in Re]).

when nonzero rewards are rare. Then each nonzero reward is There IS oné more ap_proach called direct pthy estima-
very valuable and it would be desirable to use it to update agon in which th% poll|;:y IS se?rche:j a‘z a _fznfc_:u_on fOf state
many states as possible. To do it, the so-called eligibilityﬁ(s)’ S€€, €.4., ef17], itis also re ated with fitting func-
traces have been introduced. For each state-actionspair tion approximations. We shall not consider it here.
one more variable is added(s,a). At t=0 all e are set to
0. When the system is in the stateand the actioma is
chosen, one set{s,a)=1. Then after each algorithm step The theory of RL and dynamical programming is essen-
is multiplied by\, 0<A<1. Updates in learning algorithms tially based on the hypothesis that the controlled process is
are made for all states and actions simultaneously, but tharkov. In many practical applications it is only a hypoth-

added value is proportional ta For exampleQ learning esis. Experiments show that methods of RL often can find a

G. Non-Markov processes and incomplete description

takes the form good policy even for non-Markov processes.
(t+1) A For non-Markov processes, there is also a theoretical re-
QY (s,a)=QY(s,a)+ are(s,a) sult. Suppose that the frequencies of transitigrss—s’ uni-
X[r+y maxQW(s..;,a’ ) — QW(s,,a)]. formly converge to the probabilities, and the rewards adter

, a uniformly converge to a mean rewafd(s,a)). Then there
exists a solution of the Bellman equatiof®), and value

Fors=s;, a=a;, it remains the same, while for others also iterations should converge to it. There is a proof that under
some updates are done. Similarly, the algorithm&/afsti-  these conditions, th€ learning will also converge to the
mating can be endowed with eligibility tracegs). solution of Eq.(6) [18]. Note that in this case some hidden

It has been shown that eligibility traces algorithm can beproblems may arise, since actual transition probabilities may
expressed in the form of forward predictiofy. For TD(\) depend on previous history, initial conditions, the current
method ofV* estimation the convergence has been provempolicy, and so on.

a

[15], and\ denotes the eligibility traces. Another very common problem occurs when there is a
Markov decision process, but the agent does not receive
F. Complex problems complete information about the system, that is, the knowl-

. .. f th t state i | tial. For thi , th
The methods described above are efficient when the nu edge of the current state is only partial. For this case, the

. heo f tially observed Markov decisio 0 e
ber of states is of the order of several hundreds or thousan ﬁ/IDIrDys) %asp?)relenydev;og:d Anaarlyg;/s is %SJCQ rr?(r)rgec?c?ms-

but not too large. If the number of states is too large, there i lex, but it has been shown that instead of states it is possible

no possibility of vis!ting them all a_nd trying them aII_or a +5 consider probabilities of being in a certain state, and in
least all the essential actions during a reasonable time. O '

the other hand, the state may be continuous. &rms of the probabilities the problem can be formulated as
. : n MDP[19,20.

For very complex tasks, special techniques are needed
Usually, it is assumed that the task has some properties or
special structures that enable one to reduce the complexity.
This complexity reduction sometimes is called “codin@].
There are two main approaches. Convergence of RL algorithms may drastically depend on

(a) Aggregate many statesinto one global stat& The the choice of the parameters discoyntexploratione, eli-
number of such global states can be made not too large. Aftagibility traces\, and on the sequence of averaging sieps
aggregation, the methods of RL are applied to the std&tes Convergence theorems give only the bounds for these values,
The main shortcomings of this approach éjecreation of a  but usually they do not recommend their optimal values.
good aggregation is an art rather than science unless it iMonetheless, one can find in the literature a number of rec-
obvious that for a group of states the optimal action shouldbmmendations.

H. Convergence of RL algorithms, choice of parameters,
and the purpose of this paper
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The optimal exploration leve¢ strongly depends on the gence. We consider below application of stochastic approxi-
sense of the problem. If the purpose is learning only, thenation to two simple problems which allowed us to propose
value of e may be high. On the other hand, if the systema hypothesis concerning the choice of parameters. These
must perform some task along with learning, it cannot affordconjectures are verified numerically.
to have too much of random actions, and a trade-off between
learning and performance should be reached. It depends onyy EXAMPLES OF CONVERGENCE OF STOCHASTIC
the specifics of the task, and hence no general recommenda- APPROXIMATION AND CHOICE OF a,
tions can be made.

The discounty influences the convergence, but the pri-  The literature on RL contains numerous examples of ap-
mary goa| Of |tS Choice iS to determine Wha‘[ po“cy must beplicati0n§ -Of the RL techniques. All the tasks considered C-an
considered as an optimal one. It is well known that a chang€€ subdivided into two major categories, namely, determin-
of this parameter can drastically change the optimal policy—istic and stochastic tasks. An example of the deterministic
see, e.g., examples in Ref4, 2. task is the navigation problem of an agent in a fixed maze. In

The choice of eligibility traces decay factarmay influ-  this case, gfter each action: _the next state is unique. In the
ence the Convergence Very Strong|y. As we have a|read9eterm|n|st|c case, the transition matF?XS,a,S') fOI‘ eaChS,
mentioned, they have been introduced to update action vaf is nonzero only for one’. All other cases which are not
ues of all previous actions responsib|e for the given rewarddeterministic we shall call stochastic. It turns out that the
Another interpretation is that the introduction)ofis equiva- ~ choices of learning parameters are different for the two cat-
lent to making predictions of future rewarfs 3], and so the ~ gories mentioned above, and the convergence rates are also
choice is related with the predictability time for the system.different.

This choice is also very specific to the problem at hand.
Examples of the problems where the rewards are very rare A. Deterministic learning

have been considered, e.g., in R&f, and numerical experi- We call a task deterministic when after each action the

ments show that the optimal values are around 0.8-0.9,qy¢ gtates’ is unique(in other words, a controlled dynami-

some analyt!cal gstimates can be found, e.g., in Rleﬁ].. cal system with complete knowledge of statasd the value
For systems in which correlations decay very fast, there is NQ¢ o\vard is always the same. Then Ef) becomes much
need to use eligibility traces at all. '

. simpler,
So we see that for the choice ef v, and\ there are no P
definite formulas, but there are a few ideas that can help to Q(s,a)=R(s,a,s')+y maxQ(s’,a’)
make a reasonable choice. For the sequeneg, tiiere is no a’

single simple rule except for the relati¢®. In the literature,
one can find a number of contradictory recommendations, fo®r
example,(1) take a,=(n+ 1)1, because this gives averag-
ing in Eq.(7) [3]; (2) for some problems the optimal choice ~ R(s:a,s")+y maxQ(s’,a")~Q(s,a)=f({Q})=0.
is ap=1 [1]; (3) take a,=a small enough, this choice is al
supported by proofs of convergence theorems in R&f8);
(4) use differenta,, for each state: if the state is updatetth
time at thenth step, usey,=1/k [3].

At the same time, the choice of thg, sequence may be

Here the valueR is available directly from the experiment,
and it is possible to try to solve this system online. The
simplest way is to apply iterations

important for convergence similar to the choice of other pa- Qni1(5,8)=Qn(s,a) + af({Q,).
rameters, see, e.g., R¢6]. So we have tried to work out a
rule which can help in choosing,, . Taking into account that for the optimal policd*

In one of the early papers on stochastic approximation th¢({Q*}) =0,
following formula was proposefl3]:

Qn+1(s,@)—Q*(s,a)

__@B
=i (10 =Qu(s.2)~ Q*(s,2) + a[ f({Q) — F({Q*})]
=(1-a)[Qn(s,a)—Q*(s,a)]
By varying @ and g, it is possible to obtain the above cited +ay[maxQ(s’,a’)—maxQ*(s’,a’)]
recommendations for the choice @f as special cases of Eq. a’ a’
(10). For a=B=1, one getsa,=(n+1)"%, the averaging
result in recommendatiofl). If B=«, one getsa,=a—  OF
recommendation$2) and (3). Finally, if eachQ is updated .
approximately everyngth step, then, according to recom- |Qn+1(s,@)—Q*(s,a)]
mendation (4), one can takea,=1/(n/ng+1)=nqy/(n <|1-a||Qx(s,2)— Q*(s,)|
+ny), that is, once again Eq10) with a=1, 8=n,,. e '
In this work, we have tried to work out recommendations +|aly|maxQ(s’,a’)—maxQ*(s’,a’)|.
for choosing the constants and 8 to achieve better conver- a’ a’
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Let the maximum of magx Q(s',a’) in the last term be n
achieved fora;, and that ofQ* for a,. Since Q(s’,a;) Qn=wi"Qo+ >, w"r,.
=Q(s’,az) andQ*(s',a;)<Q*(s',ay), =
[maxQ(s’,a’)—max Q*(s’,a’)| It is easy to show that
a’ a’
(n) _
=|Q(s’,a;) —Q*(s',ay)| Wo"=Cn-1Cn-2- -~ Co,
< max s’,a’)—Q*(s’,a’
e [Q(shan - Qr(shan WO—C o CraCaa Gy
1:42 i n-1-n-2 i“%i-1 Ci—lci—Z" 'Cl i—1
=maxQ(s’,a’")—Q*(s’,a")l.
a’ To simplify consideration, we can use the following esti-
. mate:
Denoting 8x(s,a) =|Q(s,a) — Q*(s,a)|, we get
Snr1(s,@)<(|1—a|+]|a|y)max §,(s,a).
" sa | IN(Co-1Ca-z- 1>—2 In 1—m
If the current policy allows to visit all states and try all ac- -1
. ; 1 n dx
tions, there should be convergence provide- o|+|a|y =_ga =—al| —
<1. This gives B<a<2/(1+ ), and the minimal value k=1 B+n 1B+X
(and hence the fastest convergeniz achieved ate=1. B+n
Therefore, in the deterministic case the optimal schent@ of —_—alnZt—
learning is p+1
Qn+1(S,a): R(S,a,s/)‘f' Y max Qn(Sl,a’). then
a/
This is the case of many classical examples of RL for navi- wim = B+1)®
gation in mazes, as it has been noted in REF. O 7\ Bg+n) "’
B. Stochastic learning - B+i\2 ap _ aB [ B+i\2 !
Let us consider the simplest possible situation: a system b\ B+n) B+i B+nlB+n

with a single state, a single action, but a number of possible
rewardsRy (this situation can be a model for a system with By varying 8, we get different estimates f@,,. Let us

several states, from which it always returns to one of them assume that afl, are independent and identically distributed,
It can be described by the single-action vaieand Eq.(6)  then

givesQ=XP,R+ yQ, thatis,Q=(R)/(1— y). Let us con-

sider calculation ofQ from experiments(onling) for this n-1 n-1
case. Iterations will have the following form: (Qn)= > Wi(n)<ri>:<R>2 w
i=1 i=1
Qn+1=Qnt an1(ry+yQn—Qn),
n—-1 n—1 . —_
wherer , is equal to one of the rewardg, . S W= aB [ p+i|at
Let us choosey,, such that this choice satisfies the condi- = &L B+niB+n
tion of stochastic approximation and ensures thataQ <1
to avoid instability and to leave some freedom for the search af a1
of optimality. One of the simplest choices is recommended in (IBJF n)a i Z (B+1)

the well-known paper on stochastic approximat{d3] «,
=ap/(B+n), B>0. We denote the initial guess f@ by
Q,. Then we obtain the following iterative scheme:

f (B+x)3 tdx

(,3+ n)aJ1
Qny1=Qn+ BB (M1t vQn—Qn)=CrQnt+anrni1, :(:8+n)a_(:8+1)a
(1=y)(B+n)?
a a
anl—m, a=aﬁ(1—y). _ 1 _ B+1 . 1 .
1-vy B+n 1-vy

At each stepn the estimate of action value must be a
weighted sum of the initial guess and the obtained rewardsl et us estimate the variance &, :
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CONVERGENCE OF REINFORCEMENT LEARNING . ..

PHYSICAL REVIEW &7, 026706 (2003

2{0
log «o[B(1-1]]

(E/Eq)

2.3.0 -

log

v=0.80

A

T
10 20

logo[aB(1-7)]

T T
-1.0 00

=0.80
-5.0 ki T T T

ad T

2.0 1 0 0. 0 1 0 30 40

log o [13(1 "Y)]

L

5.0 -1.0 00 1 0

log 1o [aBU "Y)]

30 40 50

FIG. 1. Convergence d learning during 1000 iterations for deterministic process wifi 6 states ant,=3 actions. Panel&),(b):

a=1.0, y=0.2 and 0.8, exploratioe=0 (X), 0.01 (@),

0.1 (©), 0.2 (A), 0.5 (filled triangle, 0.9 (M); panels(c),(d): €=0.2, y

=0.2, and 0.8¢=0.01 (X), 0.1 (@), 0.25 (O), 0.5 (A), 0.75(filled triangle, 1.0 (M). Panelga),(b) show that the best convergence is
achieved fore=0.2 and 0.5. Panelg),(d) show that the convergence improvesaagoes to 1 angB goes to infinity, which agrees with
theoretical analysis of deterministic learning. Navigation in mazes fits into this category.

n-1 (1) 2a—2<-1, a<1/2, p<U2a(1- )],
(Qu=(Qu)%)= 2 wiPw{™(r ~(R)(r;~(R))
o 202
o N apB 1 B 1
=X wWM2(rA—(R)?) (1-2a)(B+n)* | (B+D1)'%2  (p+n)t 2
i,j=1
- -2a
- (B+n) 4,
=((R)—(R)?) X (w2, _ y
(RO (R =1 The influence of initial conditions decays slower thamn/?,
) and the variance decreases slower than.
The last sum can be estimated as (2) 2a—2=—1, a= 1/2, B=1[2a(1— )],
_ 5 o N
63
NZ (Wl(n))2~ ’8 - 2 B+ )2a 2 6(2,82 ,B+n
= (B+n)=2 i= Dy~ —5—In;—.
B+n B+1
__“ N x22-2¢x
(Ig+n)2a g1 ' The influence of initial conditions decays as'? and the
variance decreases asnim.
Now there are three different cases. (3) 2a—2>—-1, a>1/2, B>1[2a(1— )],
0.0 0.0 4
|_|\?-1.0 ;‘;-1.0 E
< < FIG. 2. Like Fig. 1, filled ran-
820 8204 dom process witing=4 states and
y=0.20 a) ¥=0.20 C) n,=2 actions. Panel@),(b) show
3.0 1 . . . . . . 1 3.0 T T T T 1 that learning is faster for higher
20 10 00 10 20 30 40 50 20 1.0 O 30 40 50 .
log 1o [B(1-1)] exploration level. Panelgc),(d)
show that the optimal conver-
0.0 0.0 9
gence corresponds tae=1 and
=0 = aB(1—y) close to 10, that isng
s I ~10. Increase of [compare pan-
g:';-z.o g:';-z.o- els (a),(b) and (c),(d)] slows the
5 5 convergence.
3.0 T ‘Y=| 080| T T T T 1 b) 3.0 ‘Y=| 080| T T 1 d)
20 -1.0 00 30 40 50 20 10 O 30 40 50

10 20
log 1, [B(1-)]

.0 10 20
logo[aB(1-7)]
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0.0
o510 4 -
) o
2204 EELE FIG. 3. Like Fig. 1, filled ran-
y=0.20 a) y=0.20 C) dom process witms=4 states and
3.0 . . . . . . | 3.0 T T T T T T 1 n,=4 actions. Panel&),(b) show
20 10 00 10 20 30 40 50 20 1.0 0.0 10 20 30 40 50 . . .
log 1o [B(1-1)] log 1o [eB(1 9] that learning is faster for higher
00 - exploration level. Panelgc),(d)

' show that the optimal conver-
30 -3 gence corresponds ta=1 and
Lﬁ ' 5 aB(1-y)=n, close to 18. For
& 00 & 20 greatery convergence is slower.
- N 8204

3.0 ‘Y=| 080| T T T T 1 b) 3.0 ‘Y=| 080| T T T T 1 d)
20 -10 00 10 20 30 40 50 20 -10 00 10 20 30 40 50
log 1 [B(1-9)] log 1o[eB(1-7)]
22 1+a(l—1y)
aB _ _ () —
-~ [(B+n)?2t=(B+1)%*"1] Wo = -
" (2a-1)(B+n)% 1+a(l-y)n
@22 It is interesting that in this cas&i(“) is almost independent
~2a_1(,8+ n)~t of i for i large enough, and hence the estimateQyf is
almost exactly proportional to the estimate df)
=(1n)="ry.

The influence of initial conditions decays as?, and the
variance decreases BS?.

It is obvious that the third case is preferential compared
the first two. It is impossible to change the exponent for th
decay rate by varying, but it is possible to vary the factor

Therefore our example gives Eq@ll) as the recom-
tdnended choice ofy,. In real RL learning tasks averaging
gJoes on slower because at every time step we get a term
relevant to only one, a pair. Possibly this can be accounted
for by replacingn with n/ng, the effective averaging rate.
2?2 2?2 This gives the estimate in the form
2a—1 2aB(l—y)—1° B ang _ Mo

" hotal-yn' P ad-y)
To verify our hypothesis we performed calculations for a

number of tasks, wher@(s,a) can be calculated by means
of dynamical programming.

(12

It reaches minimum foa=1 or aB=(1—y) %, and there-
fore for this choice

a a

an=7_, Dn’" — — y
1+a(l-y)n (1=y[1+a(l-y)n] a1 V. NUMERICAL EXPERIMENTS
For numerical experiments we used a number of Markov
and the influence of initial guess decays as decision processes without terminal states. The transition and
00 00 %
.E-Lo 3-1.0 4
Q g
cj-a.o 5,9,_2.0 E FIG. 4. Like _Fig. 1, sparse ran-
= = dom process witlng=4 states and
s01 1" 0.20| - a) 30 7=|°-2°| . c) n,=4 actions. Panel&),(b) show
20 1.0 00 1.0 20 30 40 50 20 10 00 10 20 30 40 50 that learning is faster for higher
(ogo[B(1-¥)] log o [eB(1-1)] exploration level. Pandk) shows
0.0 0.0 4-outta-gamary that the optimal convergence cor-
W responds tax=1 andaB(1—y)
ut-1.0 uf-1.0 4 =n, close to 18. For greatery in
@; @; panel(d) there is almost no con-
P20 P20 vergence.
=0.80 =0.80
3.0 T ‘Y T T T T T T 1 b) 3.0 ‘Y T T T T T T 1 d)
20 10 00 30 40 50 20 -1.0 O 30 40 50

10 20 0 10 20
log o [B(1-7)] log-o[eB(1-Y)]
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FIG. 5. Like Fig. 1, sparse ran-
dom process witlhng=6 states and
n,= 3 actions. Panel&@),(b) show
that learning is faster for higher
exploration level. Pandk) shows
that the optimal convergence cor-
responds toa=0.5 and aB(1
—y)=ny=10°. For greatery in
panel(d) there is almost no con-
vergence.

FIG. 6. Like Fig. 11, sparse
random process with;=6 states
andn,=3 actions, obtained from
the problem of navigation of an
agent in a grid world. Panels
(@),(b) show that learning is faster
for higher exploration level. Panel
(c) shows that the optimal conver-
gence corresponds tae=1 and
aB(1-y)=ny=10. For greater
v in panel(d) the convergence is
slower.

FIG. 7. Time needed for find-
ing an optimal policyT, for the
same process as in Fig. 1. T
=10%, the optimal policy has not
been found. In most cases the op-
timal policy has been found when
the accuracy of estimates were
10% or worse. The controlled pro-
cess has six states, three actions,
and optimal behavior involves all
six states.
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4.0 4.0 -
30 304
= =
520 - 5 20 -
@ =3
o o
1.0 - 1.0 . '
y=020 a) _ FIG. 8. _Tlme ngeded for find-
0.0 O A 0-020 P A A A ing an optimal policyT, for the
T gl T T logulepgl same process as in Fig. 3. The
controlled process has four states,
4.0 - 4.0 4 ) . .
four actions, and optimal behavior
30 30 is mainly concentrated on three
3 3 states.
tg 20 4 tg 20 4
g g
1.0 1.0
=0.80 b =0.80 d
0.0 ’Y T T T T T T 1 ) 0.0 'Y T T T T T T 1 )
20 -10 00 1.0 2.0 3.0 4.0 5.0 20 10 00 10 20 3.0 4.0 5.0
log 1 [B(1-1)] log 1o[aB(1-1)]

reward matrice$ andR were generated randomly. Then we (filled triangle, 0.9 (H); panels(c),(d): e=0.2, y=0.2 and

calculated the optimal policy for them and used only thoseD.8, various 8, and «=0.01 (X), 0.1 (@), 0.25 O),

for which optimal policy fory=0 (estimated from the ma- 0.5 (A), 0.75(filled triangle), 1.0 (H).

trix R only) differs from that fory>0, that is, the possibility The results for deterministic cageig. 1) show that the

to find the optimal policy occasionally only from the reward best convergence rate is obtained @ 10°, which means

matrix was excluded. We performed calculations for varioughat during 2000 steps,= a8/(B+n) remained practically

values ofy, «, B, ande. Initial values were alway€) constant. The closex is to 1, the better is the convergence.

=0. This is in a good agreement with convergence analysis for
Since fast convergence is important in practical applicadeterministic systems in Sec. IV.

tions, we made 2000 steps of RL algorithm, at every step we For filled random processe§igs. 2 and 3 again in a

calculated the current errdg(t)=max,|Qy(s,a)—Q*(sa)|, good agreement with the examples above, there is an optimal

and considered the ratio of mean error at the steps 10—2@lue of 8, which depends om, y, ande. The dependence

(Eg) and 1000-2000 K,). This ratio has been averaged on « is close to the theoretical ong~ ' (optimal con-

over ten independent runs. vergence corresponds to approximately the same value of
Because of numerous repetitions, the calculations areB). The value oh, estimated from the figures as the value

rather time consuming, and for this reason we used Markowf «8(1— ) at the point of the plot minimum in pane(s)

processes with a few stateg and actions, only. We used and(d) is about 10—100.

three types of Markov processés). deterministic, when for For sparse random procesd€sgs. 4—6 situation is in-

all s, a only one entryP(s,a,s’)=1 and all other are zero, termediate, that is, usually there is also an optiabutn,

(if) “sparse” random—only one to two nonzero entries for is greater than in the previous case—the minimum of the

eachs, a, (iii) “filled” random, when almost all entries are error plot in panelsc) and (d) corresponds ta,=aB(1

nonzero. The presented figures were obtained for the follow- y) equal to 18, 10°, or more.

ing parameters. Pane(a),(b): «=1.0, y=0.2 and 0.8, vari- The main conclusions are the following.
ous B3, and e=0 (X), 0.01 @), 0.1 (O), 0.2 (A), 05 (1) Convergence rate is better wher=1.
4.0 4.0 4
_.30 30+
E E
e 2.0 S 2.0 4
g 10 e 10 3 FIG. 9. Time needed for find-
y=0.20 a) y=0.20 C) ing an optimal policyT, for the
0.0 T T T T T T 1 0.0 T T T T T T 1 same process as in Flg 4. The
20 -10 00 |o1g.?°[ﬁ($?y)] 30 40 50 20 -1.0 00 Iog‘l;g[ap?i(lm 30 40 50 controlled process has four states,
40 40 4 four actions, and optimal behavior
i ‘ is concentrated with 60 on one
.30 .30 state, and the rest of probability is
E = spread onto remaining three
s 2.0 s 2.0 5
@ @ states.
k-] k-]
1.0 1.0
00 T ’Y=I 0'80I T T T T 1 b) oo 'Y=I 0'BOI T T T T 1 d)
20 -10 00 1.0 2.0 3.0 4.0 5.0 20 10 00 10 20 3.0 4.0 5.0
log 1 [B(1-1)] log 1o[aB(1-1)]
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4.0 4.0 -
.30 30
£ 5
S 20 - S 2.0 4
o [=)]
o o ) )
1.0 - 1.0 5 FIG. 10. Time needed for find-
00 00 4 ¥=020 c) ing an optimal policyT; for the
- T T T T T 1 . T T T T T T 1 . .
20 10 00 10 20 30 40 50 20 10 00 10 20 30 40 50 same process as in Fig. 6. The
log 1o [B(1-1)] log o [oB(1-)] controlled process has six states,
4.0 - 4.0 - three actions, and optimal behav-

ior involves only two states. An
optimal policy is found much
faster than in other cases.

3.0

2.0 5

logo(T+)
logo(T+)

1.0

y=0.80 b)
T T T T T T 1
20 10 0.0 1.0

20
log +o[B(1-¥)]

0.0

30 40 50

. 10 20
log o [aB(1-7)]
(2) The best convergence is achieved wigh-nqg/a(1  favor of this conjecture is also the fact that the longest tran-
—1v), wheren, depends on the controlled system and maysient period corresponds to optimal sequence of six states
vary from ~ 10 tox. There is no good interpretation for the (Fig. 7), and the shortest transient to optimal sequence of two
parameten, in terms of dynamical programming or stochas- states(Fig. 10. However, this conjecture is hard to put in
tic approximation for both stochastic and deterministicrigorous form, though the mentioned effect appears to be the
systems—for the latter it cannot be considered as a meamain reason of the success of the reinforcement learning
updating interval forQ. Nonetheless, for practical purposes techniques. Anyway, proper choice of learning parameters
this parameter appears convenient. As it follows from experican accelerate learning significantly.
ments, the more deterministic the controlled procegshist
is, the more definite the result of action ithe greater is the VI. CONCLUSIONS
optimal ng.
(3) For greatery the convergence may be slower, espe-
cially for large e.

We considered the problem of choosing parameter® of
learning. We used the form of the sequeneg=aB/(B
. +n) proposed in Ref[13], and showed that the best results
(4) The greater the, the faster is the convergence, eSPe-\are obtained withe=1. The optimal value of3 depends

ua:\lly I‘ortrcl)pltlmal ’tgh nvergence is rather weak except 9N the properties of the MDIB is =1, and often it is 10,
onetheless, the convergence 1S rather weak excep cELOO, or more. As the randomness in a process decreases, the
the case of deterministic system with=1: the best result

. 3 . . optimal B value increases. For a pure deterministic process,
for r_andom sy_stem is the faCtOT 16-10° d_u0r|5ng 1000 it- in which each action uniquely defines the next state, the op-
erations, that is, the best rate is close~ta™ " (in agree-

t with th tical It § . 1 i timal value isB=0, that is,a,=1. The value ofy is not too
rr}etr;] WII eoretical resuit for \Illarltzance Bﬁ: d)f'. g spite t.critical for convergencdthough for smallery the conver-
Omal ;)Sol?c(;)/méjSﬁrr:;ezrgggci?érl;igisy € method Tinds an op I'gence is usually bettgry is more important for the appro-

/ ' . . ri valuation of performance: local, onl few

Figures 7—10 show the mean number of iterations neede@ ate evaluation of performance: local, only a few steps

. : . . . . ahead f=0) or global (y=1) optimization is necessary.
for the algorithm to find an optimal policy. Comparison with . .
the Figs. 1-6 shows that the error @restimates when the Usually the convergence is better for large exploration level

€, but its optimal choice depends on the specific problem

. . . o
optimal policy has been found is 10% or worse. Hence thP?:oncerning what level of randomness can be allowed, see,

methods of reinforcement learning do not require very accu-
rate estimates of action values to provide a good policy Mos?'g" Ref[2].
: We must note that our results were tested on a limited

probably, this is the main reason of their success. In many | ber of systems. Nonetheless, for a new RL task our re-

examples only a few hundr_ed or thousqnd time steps arults provide a possible way of achieving a better conver-
necessary to get a good policy, and, as it follows from the ence. We recommend applying RL methods with

figures, sometimes a good policy has been found under 2 /e (1— y)n] andng equal to 10, 100, 1000, and 10

very poor convergence. The reason of this phenomenon iwhich is close enough te), and compare the resultin
not clear yet. Possibly this is related with the fact that the " .~ : 9 ' P 9
olicies to find the optimaB value.

optimal policy often generates rather simple system’s dy-p
namics involving only a few states. This means that the re-

ward from this short chain is greater than that from other ACKNOWLEDGMENTS

short chains. Methods of reinforcement learning always start This work has been supported through a grant to M.K.A.
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